Optimizing Integrated‐Loss Capacities via Asymmetric Electronic Environments for Highly Efficient Electromagnetic Wave Absorption

Author:

Liu Panbo1,Zheng Shuyun1,He Zizhuang1,Qu Chang1,Zhang Leqian1,Ouyang Bo2,Wu Fan3,Kong Jie1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710129 P. R. China

2. MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing Nanjing University of Science and Technology Nanjing 210094 P. R. China

3. School of Science Tianjin University Tianjin 300072 P. R. China

Abstract

AbstractAsymmetric electronic environments based on microscopic‐scale perspective have injected infinite vitality in understanding the intrinsic mechanism of polarization loss for electromagnetic (EM) wave absorption, but still exists a significant challenge. Herein, Zn single‐atoms (SAs), structural defects, and Co nanoclusters are simultaneously implanted into bimetallic metal‐organic framework derivatives via the two‐step dual coordination‐pyrolysis process. Theoretical simulations and experimental results reveal that the electronic coupling interactions between Zn SAs and structural defects delocalize the symmetric electronic environments and generate additional dipole polarization without sacrificing conduction loss owing to the compensation of carbon nanotubes. Moreover, Co nanoclusters with large nanocurvatures induce a strong interfacial electric field, activate the superiority of heterointerfaces and promote interfacial polarization. Benefiting from the aforementioned merits, the resultant derivatives deliver an optimal reflection loss of −58.9 dB and the effective absorption bandwidth is 5.2 GHz. These findings provide an innovative insight into clarifying the microscopic loss mechanism from the asymmetric electron environments viewpoint and inspire the generalized electronic modulation engineering in optimizing EM wave absorption.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3