Heterostructured BN@Co‐C@C Endowing Polyester Composites Excellent Thermal Conductivity and Microwave Absorption at C Band

Author:

Zhong Xiao1,He Mukun1,Zhang Chenyang1,Guo Yongqiang1,Hu Jinwen2,Gu Junwei1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

2. School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong 510640 P. R. China

Abstract

AbstractThe trends of miniaturization, lightweight, and high integration in electronics have brought serious issues in heat dissipation and electromagnetic compatibility and also limited the simultaneous use of thermally conductive and microwave absorption materials. Therefore, it is imperative to design materials that possess those dual functions. In this work, one‐pot method is used to anchor zeolitic imidazolate framework ZIF‐67 coated with polydopamine (PDA) on boron nitride (BN) to obtain BN@ZIF‐67@PDA. The pyrolysis product BN@Co‐C@C is used as heterostructured thermally conductive/microwave absorption fillers and blended with polyethylene terephthalate (PET) to prepare BN@Co‐C@C/PET composites. When the mass ratio of BN to ZIF‐67@PDA is 7.5:1 and the mass fraction of BN7.5@Co‐C@C is 45 wt%, the BN7.5@Co‐C@C/PET composites exhibit excellent thermal conductivities and microwave absorption performances. The thermal conductivity coefficient is 5.37 W m−1 K−1, which is 35.8 times higher than that of PET (0.15 W m−1 K−1), and also higher than that of 45 wt% (BN7.5/Co‐C@C)/PET composites (4.03 W m−1 K−1) prepared by directly mixing. The minimum reflection loss of 45 wt% BN7.5@Co‐C@C/PET composites are −63.1 dB at 4.72 GHz, and the corresponding effective absorption bandwidth is 1.28 GHz (4.08–5.36 GHz), achieving excellent microwave absorption performance at C band.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3