Triggering the Channel‐Sulfur Sites in 1T′‐ReS2 Cocatalyst toward Splendid Photocatalytic Hydrogen Generation

Author:

Xu Jiachao1,Zhong Wei1,Zhang Xidong2,Wang Xuefei1,Hong Xuekun3,Yu Huogen12ORCID

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures and School of Chemistry Chemical Engineering and Life Sciences Wuhan University of Technology Wuhan 430070 P. R. China

2. China Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 68 Jincheng Street Wuhan 430078 P. R. China

3. School of Electronic and Information Engineering Changshu Institute of Technology Changshu 215500 P. R. China

Abstract

AbstractElectron density manipulation of active sites in cocatalysts is of great essential to realize the optimal hydrogen adsorption/desorption behavior for constructing high‐efficient H2‐evolution photocatalyst. Herein, a strategy about weakening metal–metal bond strength to directionally optimize the electron density of channel‐sulfur(S) sites in 1T′ Re1−xMoxS2 cocatalyst is clarified to improve their hydrogen adsorption strength (S─H bond) for rapid H2‐production reaction. In this case, the ultrathin Re1−xMoxS2 nanosheet is in situ anchored on the TiO2 surface to form Re1−xMoxS2/TiO2 photocatalyst by a facial molten salt method. Remarkably, numerous visual H2 bubbles are constantly generated on the optimal Re0.92Mo0.08S2/TiO2 sample with a 10.56 mmol g−1 h−1 rate (apparent quantum efficiency is about 50.6%), which is 2.6 times higher than that of traditional ReS2/TiO2 sample. Density functional theory and in situ/ex situ X‐ray photoelectron spectroscopy results collectively demonstrate that the weakened Re─Re bond strength via Mo introduction can induce the formation of unique electron‐deficient channel‐S sites with suitable electron density, which yield thermoneutral S─H bonds to realize superior interfacial H2‐generation performance. This work provides fundamental guidance on purposely optimizing the electronic state of active sites by manipulating the intrinsic bonding structure, which opens an avenue for designing efficacious photocatalytic materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3