Intermolecular Metallic Single‐Site Complexes Dispersed on Mo2TiC2Tx/MoS2 Heterostructure Induce Boosted Solar‐Driven Water Splitting

Author:

Tran Phan Khanh Linh1,Tran Duy Thanh1,Austeria P Muthu2,Kim Do Hwan2,Kim Nam Hoon1,Lee Joong Hee13ORCID

Affiliation:

1. Department of Nano Convergence Engineering Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea

2. Division of Science Education Graduate School of Department of Energy Storage/Conversion Engineering Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea

3. Center for Carbon Composite Materials Department of Polymer & Nano Science and Technology Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea

Abstract

AbstractSuccessful development of an electrocatalyst capable to promote the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) elements of water electrolysis is desirable for green hydrogen gas production. Herein, this work designs intermolecular metallic single‐site complexes of iron phthalocyanine (FePc) and vanadium oxide phthalocyanine (VOPc) dually immobilized on 3D hierarchical MoS2‐coated MXene Mo2TiC2Tx (MX/MoS2) heterostructures as a high‐performance bifunctional electrocatalyst. The well‐organized structure with an unusual coordination environment and electronic localization impressively enhances water adsorption and activation to remarkably accelerate HER and OER kinetics. Therefore, the hybrid material requires overpotentials as small as 17.4 and 300 mV to drive 10 mA cm−2 for the HER and 50 mA cm−2 for the OER in 1.0 m KOH media, respectively. The electrolyzer of MX/MoS2‐FePcVOPc(+,−) exhibits low cell voltage of only 1.45 V to reach a current response of 10 mA cm−2 in 7.0 m KOH at 75 °C along with excellent current retention stability of 99%/94% after long‐term operations of 30 h at 10/50 mA cm−2. Moreover, a solar‐to‐hydrogen conversion efficacy of 19.96% is achieved in a solar energy‐powered water electrolysis system, highlighting the great potential of the developed MX/MoS2‐FePcVOPc electrocatalyst toward water electrolysis.

Funder

National Research Foundation

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3