Phase Change Heterostructure Memory with Oxygen‐Doped Sb2Te3 Layers for Improved Durability and Reliability through Nano crystalline Island Formation

Author:

Kim Dong Hyun1,Park Seung Woo1,Choi Jun Young1,Lee Ho Jin1,Oh Jin Suk1,Joo Jong Min1,Kim Tae Geun1ORCID

Affiliation:

1. School of Electrical Engineering Korea University Seongbuk‐gu Seoul 02841 South Korea

Abstract

AbstractPhase‐change random access memory represents a notable advancement in nonvolatile memory technology; however, it faces challenges in terms of thermal stability and reliability, hindering its broader application. To mitigate these issues, doping and structural modification techniques such as phase‐change heterostructures (PCH) are widely studied. Although doping typically enhances thermal stability, it can adversely affect the switching speed. Structural modifications such as PCH have struggled to sustain stable performance under high atmospheric conditions. In this study, these challenges are addressed by synergizing oxygen‐doped Sb2Te3 (OST) with PCH technology. This study presents a novel approach in which OST significantly improves the crystallization temperature, power efficiency, and cyclability. Subsequently, the integration of the PCH technology bolsters the switching speed and further amplifies the device's reliability and endurance by refining the grain size (≈7 nm). The resultant OST‐PCH devices exhibit exceptional performance metrics, including a drift coefficient of 0.003 in the RESET state, endurance of ≈4 × 108 cycles, an switching speed of 300 ns, and 67.6 pJ of RESET energy. These findings suggest that the OST‐PCH devices show promise for integration into embedded systems, such as those found in automotive applications and Internet of Things devices.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3