Affiliation:
1. Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450052 P. R. China
2. College of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractSupercritical CO2 (SC CO2), as one of the unique fluids that possess fascinating properties of gas and liquid, holds great promise in chemical reactions and fabrication of materials. Building special nanostructures via SC CO2 for functional applications has been the focus of intense research for the past two decades, with facile regulated reaction conditions and a particular reaction field to operate compared to the more widely used solvent systems. In this review, the significance of SC CO2 on fabricating various functional materials including modification of 1D carbon nanotubes, 2D materials, and 2D heterostructures is stated. The fundamental aspects involving building special nanostructures via SC CO2 are explored: how their structure, morphology, and chemical composition be affected by the SC CO2. Various optimization strategies are outlined to improve their performances, and recent advances are combined to present a coherent understanding of the mechanism of SC CO2 acting on these functional nanostructures. The wide applications of these special nanostructures in catalysis, biosensing, optoelectronics, microelectronics, and energy transformation are discussed. Moreover, the current status of SC CO2 research, the existing scientific issues, and application challenges, as well as the possible future directions to advance this fertile field are proposed in this review.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献