Hybrid Interface Chemistry Enabling Mixed Conducting via Ultrafast Microwave Polarization Toward Dendrite‐Free Zn Anodes

Author:

Chen Yakai1,Cao Yiyao1,Chen Ke1,Rui Jiayi1,Chang Jingxi1,Yan Yan1,Lin Huijuan1,Lu Yan2,Zhao Cong3,Zhu Jixin4ORCID,Rui Kun1ORCID

Affiliation:

1. School of Flexible Electronics (Future Technologies), Institute of Advanced Materials (IAM) Key Laboratory of Flexible Electronics (KLOFE) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 P. R. China

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 P. R. China

3. College of Mechanical and Electrical Engineering Nanjing University of Aeronautics and Astronautics 29 Yudao Street Nanjing 210016 P. R. China

4. State Key Laboratory of Fire Science University of Science and Technology of China 443 Huangshan Road Hefei 230027 P. R. China

Abstract

AbstractZn metal anodes in aqueous electrolytes suffer from interface issues including uncontrolled dendrite growth and undesired side reactions, resulting in their limited application in terms of short circuits and cell failure. Herein, a hybrid interface chemistry strategy is developed through ultrafast microwave polarization at the skin region of bare Zn. Owing to efficient Joule heating directed by abundant local hot spots at electron valleys, the rapid establishment of a dense interfacial layer can be realized within a minute. Stabilized Zn with suppressed side reactions or surface corrosion is therefore achieved due to the interfacial protection. Importantly, hybrid zincophilic sites involving laterally/vertically interconnected Cu–Zn intermetallic compound and Zn2+‐conductive oxide species ensure mixed charge conducting (denoted as CuHL@Zn), featuring uniformly distributed electric field and boosted Zn2+ diffusion kinetics. As a consequence, CuHL@Zn in symmetric cells affords lifespans of 2800 and 3200 h with ultra‐low polarization voltages (≈19 and 56 mV) at a plating capacity of 1.0 mAh cm−2 for 1 and 5 mA cm−2, respectively. The CuHL@Zn||MnO2 full cell further exhibits cycling stability with a capacity retention of over 80% for 500 cycles at 2 A g−1.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3