Dynamic Behavior of Spatially Confined Sn Clusters and Its Application in Highly Efficient Sodium Storage with High Initial Coulombic Efficiency

Author:

Ma Haoqing12,Yu Ruohan1,Xu Wangwang3,Zhang Lei12,Chen Jinghui12,Zhang Bomian12,Li Jiantao1,Xu Xu1,An Qinyou1,Xu Weina4,Ma Lu5,Agrawal Kumar Varoon6,Zhao Kangning6ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. The Sanya Science and Education Innovation Park of Wuhan University of Technology Sanya 572000 P. R. China

3. Department of Mechanical Engineering Louisiana State University Baton Rouge LA 70803 USA

4. School of Material Science and Engineering Dongguan University of Technology Dongguan 523808 China

5. National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA

6. Laboratory of Advanced Separations École polytechnique fédérale de Lausanne Sion 1950 Switzerland

Abstract

AbstractAdvanced battery electrodes require a cautious design of microscale particles with built‐in nanoscale features to exploit the advantages of both micro‐ and nano‐particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state‐of‐the‐art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub‐2‐nm pores. Taking advantage of the built‐in nanoconfinement feature, the CNF film with nanometer‐sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g−1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

European Research Council

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3