Harnessing the Hybridization of a Metal‐Organic Framework and Superbase‐Derived Ionic Liquid for High‐Performance Direct Air Capture of CO2

Author:

Qiu Liqi1,Peng Li2,Moitra Debabrata1,Liu Hongjun3,Fu Yuqing4,Dong Zhun5,Hu Wenda6,Lei Ming3,Jiang De‐en3,Lin Hongfei5,Hu Jianzhi56,McGarry Kathryn A.7,Popovs Ilja8,Li Meijia8,Ivanov Alexander S.8,Yang Zhenzhen8,Dai Sheng18ORCID

Affiliation:

1. Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA

2. Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

3. Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN 37235 USA

4. Department of Chemistry University of California Riverside Riverside CA 92521 USA

5. Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA

6. Pacific Northwest National Laboratory Richland WA 99352 USA

7. Department of Chemistry University of Wisconsin-Stevens Point 2101 Fourth Avenue Stevens Point WI 54481 USA

8. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Abstract

AbstractDirect air capture (DAC) of CO2 has emerged as the most promising “negative carbon emission” technologies. Despite being state‐of‐the‐art, sorbents deploying alkali hydroxides/amine solutions or amine‐modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal‐organic framework (Ni‐MOF) with superbase‐derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low‐pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed‐bed breakthrough examination with 400 ppm CO2 gas flow reveal high‐performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g−1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy‐efficient/fast CO2 releasing behaviors. The theoretical calculation and small‐angle X‐ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2, indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL‐derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3