Ionic Pairs‐Engineered Fluorinated Covalent Organic Frameworks Toward Direct Air Capture of CO2

Author:

Qiu Liqi1,Lei Ming2,Wang Caiqi3,Hu Jianzhi34,He Lilin5,Ivanov Alexander S.5,Jiang De‐en2,Lin Hongfei3,Popovs Ilja5,Song Yanpei5,Fan Juntian5,Li Meijia5,Mahurin Shannon M.5,Yang Zhenzhen5,Dai Sheng15ORCID

Affiliation:

1. Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA

2. Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN 37235 USA

3. Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA

4. Pacific Northwest National Laboratory Richland WA 99352 USA

5. Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA

Abstract

AbstractThe covalent organic frameworks (COFs) possessing high crystallinity and capability to capture low‐concentration CO2 (400 ppm) from air are still underdeveloped. The challenge lies in simultaneously incorporating high‐density active sites for CO2 insertion and maintaining the ordered structure. Herein, a structure engineering approach is developed to afford an ionic pair‐functionalized crystalline and stable fluorinated COF (F‐COF) skeleton. The ordered structure of the F‐COF is well maintained after the integration of abundant basic fluorinated alcoholate anions, as revealed by synchrotron X‐ray scattering experiments. The breakthrough test demonstrates its attractive performance in capturing (400 ppm) CO2 from gas mixtures via O─C bond formation, as indicated by the in situ spectroscopy and operando nuclear magnetic resonance spectroscopy using 13C‐labeled CO2 sources. Both theoretical and experimental thermodynamic studies reveal the reaction enthalpy of ≈−40 kJ mol−1 between CO2 and the COF scaffolds. This implies weaker interaction strength compared with state‐of‐the‐art amine‐derived sorbents, thus allowing complete CO2 release with less energy input. The structure evolution study from synchrotron X‐ray scattering and small‐angle neutron scattering confirms the well‐maintained crystalline patterns after CO2 insertion. The as‐developed proof‐of‐concept approach provides guidance on anchoring binding sites for direct air capture (DAC) of CO2 in crystalline scaffolds.

Funder

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3