Full‐Dimensional Analysis of Gaseous Products to Unlocking In Depth Thermal Runaway Mechanism of Li‐Ion Batteries

Author:

Zhang Haitang12,Xue Jiyuan1,Qin Yaru3,Chen Jianken1,Wang Junhao1,Yu Xiaoyu1,Zhang Baodan1,Zou Yeguo1,Hong Yu‐hao2,Li Zhengang1,Qiao Yu12ORCID,Sun Shi‐Gang1

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China

2. Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory) Xiamen 361005 P. R. China

3. School of Chemistry and Chemical Engineering Qinghai Minzu University Xining 810007 China

Abstract

AbstractIn this study, state‐of‐the‐art on‐line pyrolysis MS (OP‐MS) equipped with temperature‐controlled cold trap and on‐line pyrolysis GC/MS (OP‐GC/MS) injected through high‐vacuum negative‐pressure gas sampling (HVNPGS) programming are originally designed/constructed to identify/quantify the dynamic change of common permanent gases and micromolecule organics from the anode/cathode–electrolyte reactions during thermal runaway (TR) process, and corresponding TR mechanisms are further perfected/complemented. On LiCx anode side, solid electrolyte interphase (SEI) would undergo continuous decomposition and regeneration, and the R‐H+ (e.g., HF, ROH, etc.) species derived from electrolyte decomposition would continue to react with Li/LiCx to generate H2. Up to above 200 °C, the O2 would release from the charged NCM cathode and organic radicals would be consumed/oxidized by evolved O2 to form COx, H2O, and more corrosive HF. On the contrary, charged LFP cathode does not present obvious O2 evolution during heating process and the unreacted flammable/toxic organic species would exit in the form of high temperature/high‐pressure (HT/HP) vapors within batteries, indicating higher potential safety risks. Additionally, the in depth understanding of the TR mechanism outlined above provides a clear direction for the design/modification of thermostable electrodes and non‐flammable electrolytes for safer batteries.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Dream Project of Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3