Pathways to Next‐Generation Fire‐Safe Alkali‐Ion Batteries

Author:

Zhang Yubai1ORCID,Feng Jiabing1,Qin Jiadong2ORCID,Zhong Yu Lin2ORCID,Zhang Shanqing3ORCID,Wang Hao1,Bell John1,Guo Zaiping4ORCID,Song Pingan15ORCID

Affiliation:

1. Centre for Future Materials University of Southern Queensland Springfield 4300 QLD Australia

2. Queensland Micro Nanotechnology Centre School of Environment and Science Griffith University Nathan Campus 4111 QLD Australia

3. Centre for Catalysis and Clean Energy School of Environment and Science Griffith University Gold Coast Campus 4222 QLD Australia

4. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide 5005 SA Australia

5. School of Agriculture and Environmental Science University of Southern Queensland Springfield 4300 QLD Australia

Abstract

AbstractHigh energy and power density alkali‐ion (i.e., Li+, Na+, and K+) batteries (AIBs), especially lithium‐ion batteries (LIBs), are being ubiquitously used for both large‐ and small‐scale energy storage, and powering electric vehicles and electronics. However, the increasing LIB‐triggered fires due to thermal runaways have continued to cause significant injuries and casualties as well as enormous economic losses. For this reason, to date, great efforts have been made to create reliable fire‐safe AIBs through advanced materials design, thermal management, and fire safety characterization. In this review, the recent progress is highlighted in the battery design for better thermal stability and electrochemical performance, and state‐of‐the‐art fire safety evaluation methods. The key challenges are also presented associated with the existing materials design, thermal management, and fire safety evaluation of AIBs. Future research opportunities are also proposed for the creation of next‐generation fire‐safe batteries to ensure their reliability in practical applications.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3