Adsorbed p‐Aminothiophenol Molecules on Platinum Nanoparticles Improve Electrocatalytic Hydrogen Evolution

Author:

Wang Jin1,Yu Jinhong1,Wang Junjie1,Wang Kaili1,Yu Liuyingzi1,Zhu Chengcheng1,Gao Kun1,Gong Zhongyan1,Li Zhuoyao1,Devasenathipathy Rajkumar1,Cai Dongyu1,Xie Haijiao2,Lu Gang1ORCID

Affiliation:

1. School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, and Key Laboratory of Flexible Electronics Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China

2. Hangzhou Yanqu Information Technology Co., Ltd. Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, 712 Wen'er West Road, Xihu District Hangzhou 310003 P. R. China

Abstract

AbstractElectrocatalytic hydrogen evolution is an important approach to produce clean energy, and many electrocatalysts (e.g., platinum) are developed for hydrogen production. However, the electrocatalytic efficiency of commonly used metal catalysts needs to be improved to compensate their high cost. Herein, the electrocatalytic efficiency of platinum nanoparticles (PtNPs) in hydrogen evolution is largely improved via simple surface adsorption of sub‐monolayer p‐aminothiophenol (PATP) molecules. The overpotential goes down to 86.1 mV, which is 50.2 mV lower than that on naked PtNPs. This catalytic activity is even better than that of 20 wt.% Pt/C, despite the much smaller active surface area of PATP‐adsorbed PtNPs than Pt/C. It is theoretically and experimentally confirmed that the improved electrocatalytic activity in hydrogen evolution can be attributed to the change in electronic structure of PtNPs induced by surface adsorption of PATP molecules. More importantly, this strategy can also be used to improve the electrocatalytic activity of palladium, gold, and silver nanoparticles. Therefore, this work provides a simple, convenient, and versatile method for improving the electrocatalytic activity of metal nanocatalysts. This surface adsorption strategy may also be used for improving the efficiency of many other nanocatalysts in many reactions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3