Enhanced Hydrogen Evolution Catalysis of Pentlandite due to the Increases in Coordination Number and Sulfur Vacancy during Cubic‐Hexagonal Phase Transition

Author:

Liu Yuegao1ORCID,Cai Chao2ORCID,Zhu Shengcai3ORCID,Zheng Zhi1ORCID,Li Guowu4,Chen Haiyan56,Li Chao7,Sun Haiyan1,Chou I‐Ming1,Yu Yanan8,Mei Shenghua1,Wang Liping9

Affiliation:

1. Institute of Deep‐sea Science and Engineering Chinese Academy of Sciences Sanya 572000 China

2. College of Engineering Southern University of Science and Technology Shenzhen 518055 China

3. School of Materials Sun Yat‐sen University Guangzhou 510275 China

4. Crystal Structure Laboratory Science Research Institute China University of Geosciences (Beijing) Beijing 100083 China

5. Mineral Physics Institute Stony Brook University Stony Brook New York 11794–2100 USA

6. Argonne National Laboratory Chicago 60439 USA

7. Instrumental Analysis Center Xi'an Jiaotong University Xi'an 710049 China

8. Sichuan Energy Internet Research Institute Tsinghua University Chengdu 610042 China

9. Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractThe search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS2 and WS2. Cubic pentlandite [cPn, (Fe, Ni)9S8] can be a functional material in batteries, solar cells, and catalytic fields. However, no report about the material properties of other phases of pentlandite exists. In this study, the unit‐cell parameters of a new phase of pentlandite, sulfur‐vacancy enriched hexagonal pentlandite (hPn), and the phase boundary between cPn and hPn are determined for the first time. Compared to cPn, the hPn shows a high coordination number, more sulfur vacancies, and high conductivity, which result in significantly higher hydrogen evolution performance of hPn than that of cPn and make the non‐nano rock catalyst hPn superior to other most known nanosulfide catalysts. The increase of sulfur vacancies during phase transition provides a new approach to designing functional materials.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3