A Membrane‐Associated Light‐Harvesting Model is Enabled by Functionalized Assemblies of Gene‐Doubled TMV Proteins

Author:

Dai Jing1ORCID,Wilhelm Kiera B.1ORCID,Bischoff Amanda J.1ORCID,Pereira Jose H.23ORCID,Dedeo Michel T.1,García‐Almedina Derek M.1ORCID,Adams Paul D.234ORCID,Groves Jay T.1ORCID,Francis Matthew B.13ORCID

Affiliation:

1. Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA

2. Technology Division Joint BioEnergy Institute Emeryville CA 94720 USA

3. Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Department of Bioengineering University of California, Berkeley Berkeley CA 94720 USA

Abstract

AbstractPhotosynthetic light harvesting requires efficient energy transfer within dynamic networks of light‐harvesting complexes embedded within phospholipid membranes. Artificial light‐harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein‐based light‐harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed.  The protein model consists of the tobacco mosaic viral capsid proteins that are gene‐doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site‐selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual‐modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein‐surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light‐harvesting system.

Funder

U.S. Department of Energy

Office of Science

National Institute of General Medical Sciences

Novo Nordisk Fonden

National Institutes of Health

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3