Synthesis and Self‐Assembly of Ultrathin Holey Graphdiyne Nanosheets for Oxygen Reduction Reaction

Author:

Hao Wenjun1,Su Xinyu1,Lu Shan1,Wang Jiaqian1,Chen Hui2,Chen Qinlong3,Wang Bo1,Kong Xueqian3,Jin Chuanhong1,Han Gaorong1,Han Zhongkang1,Müllen Klaus4,Chen Zongping1ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310030 China

2. College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao 266510 China

3. Center for Chemistry of High‐Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310030 China

4. Max Planck Institute for Polymer Research D‐55128 Ackermannweg 10 Mainz Germany

Abstract

AbstractGraphdiyne (GDY) is a fascinating graphene‐like 2D carbon allotrope comprising sp and sp2 hybridized carbon atoms. However, GDY materials synthesized by solution‐phase methods normally come as thick and porous films or amorphous powders with severely disordered stacking modes that obstruct macroscopic applications. Here, a facile and scalable synthesis of ultrathin holey graphdiyne (HGDY) nanosheets is reported via palladium/copper co‐catalyzed homocoupling of 1,3,5‐triethynylbenzene. The resulting freestanding 2D HGDY self‐assembles into 3D foam‐like networks which can in situ anchor clusters of palladium atoms on their surfaces. The Pd/HGDY hybrids exhibit high electrocatalytic activity and stability for the oxygen reduction reaction which outperforms that of Pt/C benchmark. Based on the ultrathin graphene‐like sheets and their unique 3D interconnected macrostructures, Pd/HGDY holds great promise for practical electrochemical catalysis and energy‐related applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3