Atomic Interface Engineering of Single‐Atom Pt/TiO2‐Ti3C2 for Boosting Photocatalytic CO2 Reduction

Author:

Li Han1,Song Qinjun1,Wan Sijie1,Tung Ching‐Wei2,Liu Chengyuan3,Pan Yang3,Luo GuoQiang1,Chen Hao Ming45,Cao Shaowen1ORCID,Yu Jiaguo6,Zhang LianMeng1

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. Department of Materials Engineering Ming Chi University of Technology New Taipei City 24301 Taiwan

3. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026 P. R. China

4. Department of Chemistry National Taiwan University Taipei 10617 Taiwan

5. Graduate Institute of Nanomedicine and Medical Engineering College of Biomedical Engineering Taipei Medical University Taipei 11031 Taiwan

6. Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China

Abstract

AbstractSolar‐driven CO2 conversion into valuable fuels is a promising strategy to alleviate the energy and environmental issues. However, inefficient charge separation and transfer greatly limits the photocatalytic CO2 reduction efficiency. Herein, single‐atom Pt anchored on 3D hierarchical TiO2‐Ti3C2 with atomic‐scale interface engineering is successfully synthesized through an in situ transformation and photoreduction method. The in situ growth of TiO2 on Ti3C2 nanosheets can not only provide interfacial driving force for the charge transport, but also create an atomic‐level charge transfer channel for directional electron migration. Moreover, the single‐atom Pt anchored on TiO2 or Ti3C2 can effectively capture the photogenerated electrons through the atomic interfacial PtO bond with shortened charge migration distance, and simultaneously serve as active sites for CO2 adsorption and activation. Benefiting from the synergistic effect of the atomic interface engineering of single‐atom Pt and interfacial TiOTi, the optimized photocatalyst exhibits excellent CO2‐to‐CO conversion activity of 20.5 µmol g−1 h−1 with a selectivity of 96%, which is five times that of commercial TiO2 (P25). This work sheds new light on designing ideal atomic‐scale interface and single‐atom catalysts for efficient solar fuel conversation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3