Molten Salt Synthesis of Ti3C2/Cu Cocatalyst for Enhanced TiO2 Photocatalytic CO2 Reduction

Author:

Xu Wangyue1,Peng Yuhao1,Hu Di2,Razanau Ihar3,Gu Dong4,Xiao Wei1ORCID

Affiliation:

1. College of Chemistry and Molecular Sciences Hubei Key Laboratory of Electrochemical Power Sources Wuhan University Wuhan 430072 P. R. China

2. Department of Chemical and Environmental Engineering University of Nottingham Ningbo China Ningbo Zhejiang 315100 P. R. China

3. Laboratory of physical-chemical technologies SSPA “Scientific and Practical Materials Research Centre of NAS of Belarus Minsk 220072 Belarus

4. The Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China

Abstract

AbstractPhotocatalytic reduction of CO2 is considered as a crucial pathway towards achieving sustainable energy and environmental goals. Nonetheless, attaining efficient CO2 conversion poses significant challenges, primarily due to the slow dynamics of charge carriers and the high activation energy required to break C=O bonds. In this study, a novel strategy involving Lewis acid molten salt etching is investigated to engineer a titanium oxide (TiO2)‐based photocatalysts with dual electron transfer channels (i. e., Ti3C2/Cu), which targets the photoreduction of CO2 to CO and CH4. Thanks to the dual electron transfer channels presented in the cocatalysts (Ti3C2/Cu), in conjunction with the numerous heterogeneous interfaces between TiO2 and the Ti3C2/Cu cocatalysts, this hybrid catalyst not only reduces charge transfer resistance but also accelerates the dynamics of photogenerated charge carriers. Consequently, the TiO2/Ti3C2/Cu hybrid catalyst demonstrates an exceptional photocatalytic CO2 reduction rate of 13.67 μmol g−1 h−1, with a total utilized photoelectron number (UPN) of 102.34 μmol g−1 h−1. which is 3.99‐fold higher than that of unmodified TiO2. This research provides a new approach for the preparation of dual cocatalysts through a one‐step molten salt synthesis process.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3