Chiral Ruthenium Nanozymes with Self‐Cascade Reaction Driven the NO Generation Induced Macrophage M1 Polarization Realizing the Lung Cancer “Cocktail Therapy”

Author:

Chen Xu12,Yang Yonglan1,Ye Gang1,Liu Shengming1,Liu Jie1ORCID

Affiliation:

1. College of Chemistry and Materials Science The First Affiliated Hospital of Jinan University Jinan University Guangzhou 510632 P. R. China

2. Department of Rheumatology and Immunology Guangdong Second Provincial General Hospital Guangzhou 510317 P. R. China

Abstract

AbstractMacrophages as the main cause of cancer immunosuppression, how to effectively induce macrophage M1 polarization remain the major challenge in lung cancer therapy. Herein, inspired by endogenous reactions, a strategy is proposed to coactivate macrophage M1 polarization by reactive oxygen species (ROS) and nitric oxide (NO) with self‐autocatalytic cascade reaction. To enhance the generation of NO and ROS, NO Precursor‐Arginine as capping agents for inducing synthesis two kinds of chiral ruthenium nanozyme (D/L‐Arginine@Ru). Under the properties of Ru nanozymes through synchronously mimicking the activity of oxidase and nitric oxide synthase (NOS), chiral Ru nanozyme can rapidly generate 1O2 and O2 at first stage, and then catalyze Arginine to produce sufficient NO, thus enhance macrophage M1 polarization to reverse tumor immunosuppression. Moreover, combination the antitumor activity of 1O2, NO, the chiral Ru nanozymes realize the “cocktail therapy” by inducing tumor cell apoptosis as well as ferroptosis. In addition, the chirality influences the bioactivity of Ru nanozymes that L‐Arginine@Ru shows the better therapeutic effect with stronger catalytic activity and natural homology. It is hoped the high performance of chiral Ru nanozyme with “cocktail therapy” is an effective therapeutic reagent and can provide a feasible treatment strategy for tumor catalytic therapy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3