Affiliation:
1. State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
2. Department of Materials Science and Engineering Jiangsu Key Laboratory of Artificial Functional Materials Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University Nanjing 210023 P. R. China
Abstract
AbstractDefects, such as unsaturated coordination centers and vacancies, can fundamentally change materials’ inherent properties and growth habits. The development of defect engineering has promoted the application of many technologies, but it is still a great challenge to selectively manufacture defect sites in existing material systems. It is shown here that in situ site‐directed tailoring of metal sites in Prussian blue analogs (PBA) can be achieved according to the reducibility differences of different metal atoms, forming naturally nonpreferred unsaturated coordination centers. Meanwhile, the in situ capture of small reducing molecule can realize site‐directed tailoring of crystal facets during crystal growth and results in oriented 1D growth. As an oxygen evolution reaction catalyst, the resulted PBA with the nonpreferred unsaturated coordination centers shows a low overpotential of 239 mV at 10 mA cm−2 in alkali, superior to the original PBAs and the previously reported defective PBA derivatives, which can be ascribed to the unsaturated coordination active center and the unique 1D structure. This work opens up opportunities for producing naturally nonpreferred unsaturated coordination center in nanomaterials for broad applications.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献