Affiliation:
1. Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Universidad Cardenal Herrera‐CEU Valencia Spain
2. Department of Plant Biology and Ecology University of Seville Seville Spain
3. Department of Animal Science Aarhus University Tjele Denmark
Abstract
AbstractEcological nutrition aims to unravel the extensive web of nutritional links that drives animals in their interactions with their ecological environments. Nutrition plays a key role in the success of European wild rabbit (Oryctolagus cuniculus) and could be affected by the breeding status of the animals and reflected in the metabolome of this species. As nutritional needs are considerably increased during pregnancy and lactation, the main objective of this work was to determine how the breeding status (pregnant and lactating) of European wild rabbit does affects nutritional requirements and their metabolome (using targeted and untargeted metabolomics), aiming to find a useful biomarker of breeding status and for monitoring nutritional requirements. To address this gap, 60 wild European rabbits were studied. Animals were divided according to their breeding status and only pregnant (n = 18) and lactating (n = 11) rabbit does were used (n = 29 in total). The body weight and length of each animal were analyzed. The relative and absolute chemical composition of the gastric content and whole blood sample were taken, and targeted and untargeted metabolomics were analyzed. As a main result, there were no differences in biometric measurements, gastric content, and targeted metabolomics, except for live weight and nonesterified fatty acids (NEFA), as pregnant animals showed higher live weight (+12%; p = 0.0234) and lower NEFA acid levels (−46%; p = 0.0262) than lactating females. Regarding untargeted metabolomics, a good differentiation of the metabolome of the two breeding groups was confirmed, and it was proven that pregnant animals showed higher plasmatic levels of succinic anhydride (3.48 more times; p = 0.0236), succinic acid (succinate) (3.1 more times; p = 0.0068) and propionic acid (3.98 more times; p = 0.0121) than lactating animals. However, lactating animals showed higher levels of N‐[(3a,5b,7b)‐7‐hydroxy‐24‐oxo‐3‐(sulfoxide) cholan‐24‐yl]‐Glycine (cholestadien) (2.4 more times; p < 0.0420), 4‐maleyl‐acetoacetate (MAA) (3.2 more times; p < 0.0364) and irilone (2.2 more times; p = 0.0451) than pregnant animals, any of these metabolites could be used as a potential biomarker. From these results, it can be concluded that the most notable changes were observed in the metabolome of individuals, with most of the changes observed being due to energy and protein mobilisation.