Translational relevance of SOS1 targeting for KRAS‐mutant colorectal cancer

Author:

Alem Diego1,Yang Xinrui1,Beato Francisca1,Sarcar Bhaswati1,Tassielli Alexandra F.1,Dai Ruifan1,Hogenson Tara L.2,Park Margaret A.1,Jiang Kun3,Cai Jianfeng4,Yuan Yu5,Fernandez‐Zapico Martin E.2,Tan Aik Choon6ORCID,Fleming Jason B.1,Xie Hao1

Affiliation:

1. Department of Gastrointestinal Oncology H Lee Moffitt Cancer Center and Research Institute Tampa Florida USA

2. Department of Oncology, Schulze Center for Novel Therapeutics Mayo Clinic Rochester Minnesota USA

3. Department of Pathology H Lee Moffitt Cancer Center and Research Institute Tampa Florida USA

4. Department of Chemistry University of South Florida Tampa Florida USA

5. Department of Chemistry University of Central Florida Orlando Florida USA

6. Department of Biostatistics and Bioinformatics H Lee Moffitt Cancer Center and Research Institute Tampa Florida USA

Abstract

AbstractIt has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient‐derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA‐seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial−mesenchymal transition, and TNF‐α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP‐bound RAS level underwent rebound even in BI3406‐sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1‐targeting agents in CRC.

Funder

Moffitt Cancer Center

Publisher

Wiley

Subject

Cancer Research,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3