Self‐reported treatment effectiveness for Crohn's disease using a novel crowdsourcing web‐based platform

Author:

Engel Tal12ORCID,Dotan Eran23,Synett Yossi3,Held Ron3,Soffer Shelly45ORCID,Ben‐Horin Shomron12ORCID,Kopylov Uri12ORCID

Affiliation:

1. Department of Gastroenterology Sheba Medical Center Ramat Gan Israel

2. Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel

3. StuffThatWorks© Tel Aviv Israel

4. Internal Medicine B Assuta Medical Center Ashdod Israel

5. Ben‐Gurion University of the Negev Be'er Sheva Israel

Abstract

AbstractBackground and AimsInternet and social media platforms have become an unprecedented source for sharing self‐experience, potentially allowing the collection and integration of health data with patient experience. StuffThatWorks (STW) is an online open platform that applies machine learning and the power of crowdsourcing, where patients with chronic medical conditions can self‐report and compare their individual outcomes using a structured online questionnaire. We aimed to conduct a cross‐sectional, international, crowdsourcing, artificial‐intelligence (AI) web‐based study of patients with Crohn's disease (CD) self‐reporting their outcomes.MethodsA proprietary STW Bayesian inference model was built to measure improvement in CD severity (on scale of 1–5) for each treatment and ranked treatments using effectiveness. The effectiveness of first‐line biological treatments was analyzed by multiple comparisons and by calculating odds ratios and 95% confidence intervals for each treatment pair.ResultsWe included 7593 self‐reported CD patients for the analysis. Most of the participants were female (75.8%) and from English‐speaking countries (95.7%). Overall, anti‐TNF drugs were the most reported tried treatment (52.8%). Infliximab (IFX) was ranked as the most effective treatment by the STW effectiveness model followed by bowel surgery (second), adalimumab (ADA, third), ustekinumab (UST, 4rd), and vedolizumab (VDZ, fifth). In paired comparison analyses, IFX was most effective, ADA had similar effectiveness compared to UST and all three were more effective than VDZ.ConclusionWe present the first online crowdsourcing AI platform‐based study of self‐reported treatment effectiveness in CD. Net‐based crowdsourcing patient‐reported outcome platforms can potentially help both clinicians and patients select the best treatment for their condition.

Publisher

Wiley

Subject

Gastroenterology,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UEG onwards & upwards: A president's perspective;United European Gastroenterology Journal;2024-01-05

2. Surfing the web as a patient with IBD: New horizons;United European Gastroenterology Journal;2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3