Hidradenitis Suppurativa International Online Community: Patient Characteristics and a Novel Model of Treatment Effectiveness

Author:

Barak-Levitt Jen,Held Ron,Synett Yossi,Kremer Noa,Hodak Emmilia,Sherman Shany

Abstract

Treatment for hidradenitis suppurativa is diverse, yet frequently unsatisfactory. The aims of this study were to create a reproducible artificial intelligence-based patient-reported outcome platform for evaluation of the clinical characteristics and comorbidities of patients with hidradenitis suppurativa, and to use this to grade treatment effectiveness. A retrospective patient- reported outcome study was conducted, based on online questionnaires completed by English-speaking patients registered to the hidradenitis suppurativa StuffThatWorks® online community. Data collected included patient characteristics, comorbidities and treatment satisfaction. These were recoded into scalable labels using a combination of machine learning algorithm, manual coding and validation. A model of treatment effectiveness was generated. The cohort included 1,050 patients of mean ± standard deviation age 34.3 ± 10.3 years. Greater severity of hidradenitis suppurativa was associated with younger age at onset (p < 0.001) and male sex (p < 0.001). The most frequent comorbidities were depression (30%), anxiety (26.4%), and polycystic ovary syndrome (16.6%). Hurley stage I patients rated topical agents, dietary changes, turmeric, and pain relief measures more effective than tetracyclines. For Hurley stage II, adalimumab was rated most effective. For Hurley stage III, adalimumab, other biologic agents, systemic steroids, and surgical treatment were rated more effective than tetracyclines. Patients with hidradenitis suppurativa often have comorbid psychiatric and endocrine diseases. This model of treatment effectiveness provides a direct comparison of standard and complementary options.

Publisher

Medical Journals Sweden AB

Subject

Dermatology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3