A Redox‐Based Ion‐Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses

Author:

Wada Tomoki12,Nishioka Daiki12ORCID,Namiki Wataru1ORCID,Tsuchiya Takashi12ORCID,Higuchi Tohru2,Terabe Kazuya1ORCID

Affiliation:

1. Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan

2. Department of Applied Physics Faculty of Science Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan

Abstract

Herein, physical reservoir computing with a redox‐based ion‐gating reservoir (redox‐IGR) comprising LixWO3 thin film and lithium‐ion conducting glass ceramic (LICGC) is demonstrated. The subject redox‐IGR successfully solves a second‐order nonlinear dynamic equation by utilizing voltage pulse driven ion‐gating in a LixWO3 channel to enable reservoir computing. Under the normal conditions, in which only the drain current (ID) is used for the reservoir states, the lowest prediction error is 8.15 × 10−4. Performance is enhanced by the addition of IG to the reservoir states, resulting in a significant lowering of the prediction error to 5.39 × 10−4, which is noticeably lower than other types of physical reservoirs (memristors and spin torque oscillators) reported to date. A second‐order nonlinear autoregressive moving average (NARMA2) task, a typical benchmark of reservoir computing, is also performed with the IGR and good performance is achieved, with a normalized mean square error (NMSE) of 0.163. A short‐term memory task is performed to investigate an enhancement mechanism resulting from the IG addition. An increase in memory capacity, from 2.35 without IG to 3.57 with IG, is observed in the forgetting curves, indicating that enhancement of both high dimensionality and memory capacity is attributed to the origin of the performance improvement.

Funder

Japan Society for the Promotion of Science

Yazaki Memorial Foundation for Science and Technology

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3