Game Theoretic Non‐cooperative Dynamic Target Tracking for Directional Sensing‐Enabled Unmanned Aerial Vehicles

Author:

Yi Peng12ORCID,Jin Ge1ORCID,Wang Wenyuan1

Affiliation:

1. Department of Control Science and Engineering Tongji University Shanghai 201804 China

2. National Key Laboratory of Autonomous Intelligent Unmanned Systems, Frontiers Science Center for Intelligent Autonomous Systems, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai China

Abstract

In this article, a game theoretic non‐cooperative dynamic target tracking algorithm that empowers defensive unmanned aerial vehicles (UAVs), with directional sensing capabilities to track and collect information on intrusive UAVs, is proposed. Specifically, defenders aim to maximize the collection of identity information from intruders possessing anti‐tracking and evading capabilities, while simultaneously preventing their entry into protected areas. Game theory is employed to determine the optimal confrontation paths for defenders against the intruders. The probability perception model is utilized for evaluating the dynamic target tracking capability and designing a tracking merit function to assess tracking performance, taking into account both the target's position and the perception relative angle. Furthermore, considering the dynamic interactive behaviors between intruders and defenders, the iterative linear quadratic game (ILQG) algorithm is employed to solve the Nash equilibrium of the non‐cooperative target tracking game. Through simulation experiments, the effectiveness of the proposed algorithm in accomplishing multi‐agent dynamic target tracking tasks is demonstrated and the performance of the algorithm under varying parameters in the intruder's cost function is evaluated, which represent different intrusion intentions.

Publisher

Wiley

Reference28 articles.

1. L.Dressel M. J.Kochenderfer in2019 Int. Conf. Robot. Automat. (ICRA) IEEE Montreal QC2019 pp.1905–1912.

2. Intensive Review of Drones Detection and Tracking: Linear Kalman Filter Versus Nonlinear Regression, an Analysis Case

3. D.Shishika D. G.Macharet B. M.Sadler V.Kumar in2020 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) IEEE Las Vegas NV 2020 pp.11703–11709.

4. Coverage Control of Multiple Unmanned Aerial Vehicles: A Short Review

5. A.Gusrialdi T.Hatanaka M.Fujita in2008 47th IEEE Conf. Decision Control IEEE Cancun Mexico 2008 pp.4263–4268.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3