Biodegradable and Flexible Polymer‐Based Memristor Possessing Optimized Synaptic Plasticity for Eco‐Friendly Wearable Neural Networks with High Energy Efficiency

Author:

Oh Sungjun12,Kim Hyungjin3,Kim Seong Eun12,Kim Min-Hwi4,Park Hea-Lim5,Lee Sin-Hyung12ORCID

Affiliation:

1. School of Electronics Engineering Kyungpook National University 80 Daehak-ro Buk-gu Daegu 702-701 Republic of Korea

2. School of Electronic and Electrical Engineering Kyungpook National University 80 Daehak-ro Buk-gu Daegu 702-701 Republic of Korea

3. Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea

4. School of Electrical and Electronics Engineering Chung-Ang University Seoul 06974 Republic of Korea

5. Department of Materials Science and Engineering Seoul National University of Science and Technology Seoul 01811 Republic of Korea

Abstract

Organic memristors are promising candidates for the flexible synaptic components of wearable intelligent systems. With heightened concerns for the environment, considerable effort has been made to develop organic transient memristors to realize eco‐friendly flexible neural networks. However, in the transient neural networks, achieving flexible memristors with biorealistic synaptic plasticity for energy efficient learning processes is still challenging. Herein, a biodegradable and flexible polymer‐based memristor, suitable for the spike‐dependent learning process, is demonstrated. An electrochemical metallization phenomenon for the conductive nanofilament growth in a polymer medium of poly (vinyl alcohol) (PVA) is analyzed and a PVA‐based transient and flexible artificial synapse is developed. The developed device exhibits superior biodegradability and stable mechanical flexibility due to the high water solubility and excellent tensile strength of the PVA film, respectively. In addition, the developed flexible memristor is operated as a reliable synaptic device with optimized synaptic plasticity, which is ideal for artificial neural networks with the spike‐dependent operations. The developed device is found to be effectively served as a reliable synaptic component with high energy efficiency in practical neural networks. This novel strategy for developing transient and flexible artificial synapses can be a fundamental platform for realizing eco‐friendly wearable intelligent systems. An interactive preprint version of the article can be found here: https://doi.org/10.22541/au.166603245.58711630/v1.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3