Sarcomere‐Inspired Multilayer Artificial Muscle Units for Hyperconfigurable Robotic Applications

Author:

Ambrose Jonathan William12ORCID,Tan Gavril Yong En2,Chiang Nicholas Zhang Rong2,Cheah Dylan Sin You3,Xiong Quan12,Yeow Chen-Hua124

Affiliation:

1. Evolution Innovation Laboratory Advance Robotics Centre Singapore 117608

2. Department of Biomedical Engineering National University of Singapore Singapore 117583

3. Department of Biomedical Engineering Nanyang Polytechnic Singapore 569830

4. Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 USA

Abstract

Soft pneumatic biomimetic robotic systems excel at the specific application they are designed for, often to interact or navigate unstructured environments safely. However, redeployment to new purposes requires substantial resources, from redesign to revalidation. Despite most pneumatic artificial muscles surpassing the power and contraction performance of natural muscles, natural muscles largely remain unmatched in terms of their versatility and complex performance. This is likely due to artificial muscle's low effective strain and high radial expansion, limiting parallel operating efficiencies. To address these challenges, a class of compact versatile pneumatic actuators, called multilayer artificial muscle (MAM), that are capable of deployment to different applications through configurable modularity, is presented. The MAMs are biomimetically inspired by the sarcomere, the building block for natural muscle architecture. Similarly, MAM can extend and contract as well as be rearranged to mimic muscle‐like actions and functions, such as a caterpillar locomotion robot and an entire robotic arm. The MAMs are fabricated through multilayer, multimaterial, low‐cost additive manufacturing, which offers certain advantages such as higher extension, contraction force, and durability. MAMs have the potential to provide a crucial fundamental building block toward future versatile reconfigurable architecture.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3