GSCtool: A Novel Descriptor that Characterizes the Genome for Applying Machine Learning in Genomics

Author:

Shen Zijie12ORCID,Shen Enhui2ORCID,Zhu Qian-Hao3ORCID,Fan Longjiang12ORCID,Zou Quan45ORCID,Ye Chu-Yu2

Affiliation:

1. Hainan Institute Zhejiang University Sanya 572025 China

2. Institute of Crop Science & Institute of Bioinformatics College of Agriculture & Biotechnology Zhejiang University Hangzhou 310058 China

3. CSIRO Agriculture and Food GPO Box 1700 Canberra ACT 2601 Australia

4. Yangtze Delta Region Institute (Quzhou) University of Electronic Science and Technology of China Quzhou 324003 China

5. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China

Abstract

Machine learning (ML) is one of the core driving forces for the next breeding stage, and Breeding 4.0. Genotype matrix based on single‐nucleotide polymorphisms (SNPs) is often used in ML for genome‐to‐phenotype prediction. Genotype matrix has an inherent defect, as the feature spaces it generates across different individuals or groups are inconsistent, and this hinders the application of ML. To overcome the challenge, a genome descriptor, Genic SNPs Composition Tool (GSCtool) is developed, which counts the number of SNPs in each gene of the genome so the dimension of the feature vectors equals the number of annotated genes in a species. Compared to using the genotype matrix, using GSCtool significantly decreases the model training time and has a higher accuracy of phenotype prediction. GSCtool also achieves good performance in variety identification, which is useful in crop variety protection. In general, GSCtool will help facilitate the application and study of genomic ML. The source code and test data of GSCtool are freely available at https://github.com/SZJhacker/GSCtool and https://gitee.com/shenzijie/GSCtool.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3