A Novel Distal Hybrid Pneumatic/Cable‐Driven Continuum Joint with Variable Stiffness Capacity for Flexible Gastrointestinal Endoscopy

Author:

Luo Xiangyu1,Song Dezhi1,Zhang Zhiqiang2,Wang Shuxin1ORCID,Shi Chaoyang1ORCID

Affiliation:

1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education School of Mechanical Engineering Tianjin University Tianjin 300072 China

2. School of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UK

Abstract

The robot‐assisted flexible access surgery represented by the emerging robot‐assisted flexible endoscopy (FE) and natural orifice transluminal endoscopic surgery demands flexible and continuum manipulators instead of the rigid and straight instruments in the traditional minimally invasive surgery (MIS). These flexible manipulators are required to advance through the tortuous and narrow anatomic paths via natural orifices for dexterous diagnostic examination and therapeutic operations. Therefore, developing flexible endoscopic manipulators with the capacity of snake‐like movements for flexible access and variable stiffness regulation for operations to address these flexible access surgical difficulties is demanding but remains challenging. To address such challenges, herein, it is proposed that a novel distal continuum joint based on the hybrid pneumatic and cable‐driven approach achieves variable stiffness capacity, excellent bending characteristics in both flexible and rigid states, satisfactory motion consistency and shape‐locking ability during the rigid‐flexible transition, and relatively high loading capacity for flexible gastrointestinal endoscopic robots. Characterization experiments validate these performances, and phantom and ex vivo experiments have been performed to demonstrate the feasibility and effectiveness for FE. The presented method demonstrates an effective and practical approach to enabling continuum robots with both flexible access and tunable stiffness capacity and supports a convenient extension for MIS applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3