Ultralow‐Power Compact Artificial Synapse Based on a Ferroelectric Fin Field‐Effect Transistor for Spatiotemporal Information Processing

Author:

Zhang Zhaohao12ORCID,Zhan Guohui12,Gan Weizhuo12,Cheng Yan3,Zhang Xumeng4,Peng Yue5,Tang Jianshi6,Zhang Fan15,Huo Jiali12,Xu Gaobo1,Zhang Qingzhu1,Wu Zhenhua12,Liu Yan5,Lv Hangbing12,Liu Qi4,Han Genquan5,Yin Huaxiang12,Luo Jun12,Wang Wenwu12

Affiliation:

1. State Key Laboratory of Fabrication Technologies for Integrated Circuits Institute of Microelectronics of Chinese Academy of Sciences Beijing 100029 China

2. School of Integrated Circuits University of Chinese Academy of Sciences Beijing 100049 China

3. Key Laboratory of Polar Materials and Devices East China Normal University Shanghai 200062 China

4. Frontier Institute of Chip and System Fudan University Shanghai 200062 China

5. The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology School of Microelectronics Xidian University Xi'an 710071 China

6. School of Integrated Circuits Tsinghua University Beijing 100084 China

Abstract

Artificial synapses are key elements in building bioinspired, neuromorphic computing systems. Ferroelectric field‐effect transistors (FeFETs) with excellent controllability and complementary metal oxide semiconductor (CMOS) compatibility are favorable to achieving synaptic functions with low power consumption and high scalability. However, because of the only nonvolatile ferroelectric (Fe) characteristics in the FeFET, it is difficult to develop bioplausible short‐term synaptic elements for spatiotemporal information processing. By judiciously combining defects (DE) and Fe domains in gate stacks, a compact artificial synapse featuring spatiotemporal information processing on a single Fe–DE fin FET (FinFET) is proposed. The devices are designed to work in a separate DE mode to induce short‐term plasticity by spontaneous charge detrapping, and a hybrid Fe–DE mode to trigger long‐term plasticity through the coupling of defects and Fe domains. The capability of the compact synapse is demonstrated by differentiating 16 temporal inputs. Moreover, the highly controllable static electricity of advanced FinFETs leads to an ultralow power of 2 fJ spike−1. An all Fe–DE FinFET reservoir computing (RC) system is then constructed that achieves a recognition accuracy of 97.53% in digit classification. This work enables constructing RC systems with fully advanced CMOS‐compatible devices featuring highly energy‐efficient and low‐hardware systems.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3