Affiliation:
1. Department of Biomedical Engineering City University of Hong Kong Tat Chee Avenue Hong Kong SAR China
2. Engineering Product Development Pillar Singapore University of Technology and Design Singapore 487372 Singapore
3. Department of Mechanical Engineering City University of Hong Kong Tat Chee Avenue Hong Kong SAR China
Abstract
The current paper addresses the problem of stabilizing multiple aerial robots cooperatively transporting a cable‐suspended payload by an aeromechanic method. Instead of relying on global navigation satellite systems (GNSS) or vision and communication for agents to actively estimate and control the state of the multibody dynamics, lightweight air dampers to make the multiagent system inherently stable at its equilibrium state, permitting the robots to safely carry a load at a constant velocity are employed. This is achieved without additional state estimation or active correction. The proposed framework is proven stable and verified by simulations and extensive flight experiments. Lightweight mechanical dampers (under 7 g) are shown to be effective in attenuating undesired oscillations and overcoming disturbances. To this end, a team of four robots cooperatively transporting a payload over 20 m in open space is demonstrated, and three robots safely transporting a point‐mass payload over a distance of 45 m outdoors. The promising outcomes highlight the benefits of the passive strategy, which demands minimal hardware components and computation to realize the sophisticated aerial transport task.
Funder
Research Grants Council, University Grants Committee
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献