Affiliation:
1. Department of Mechanical and Industrial Engineering University of Toronto 170 College Street Toronto M5S 3E3 Canada
2. Robotics Institute University of Toronto 55 St George St Toronto ON M5S0C9 Canada
3. Institute of Biomedical Engineering University of Toronto 164 College St. Toronto ON M5S 3E2 Canada
Abstract
Magnetically driven miniature soft robots exhibit fast and dexterous responses to an applied external magnetic field. With remote manipulation, controlled navigation of robots can be realized within hard‐to‐access spaces for potential use in the human body. Existing magnetic miniature soft robots using digital light processing are fabricated from planar sheets, and thus have limited shape transformations and locomotive behaviors. Herein, a multilayer 3D printing method is reported for patterning magnetic nanoparticles in ultraviolet (UV)‐curable polymer matrix. Various multilayer 3D structures within 10 mm in overall size are fabricated with controlled volumes at different parts, which outperform 2D folded shapes in terms of robustness and kinematic flexibility. By programming heterogeneous magnetization within discrete multilayer robot segments, magnetic torque‐induced shape changes including gripping, rolling, swimming, and walking are induced by a global actuation field. Stacked design features with minimum dimension of 200 μm and encoded magnetization with resolution of 350 μm can be realized in the printing process. Meanwhile, enhanced deformation flexibility and formation of orientation‐anchoring mechanisms are created by integrating multiple materials with distinct mechanical and magnetic properties, respectively, which enables the creation of versatile 3D multi‐material actuators.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献