Ferroelectric Tunnel Junction Memristors for In‐Memory Computing Accelerators

Author:

Athle Robin1ORCID,Borg Mattias1ORCID

Affiliation:

1. Electrical and Information Technology Lund University Lund Box 118, 22 100 Sweden

Abstract

Neuromorphic computing has seen great interest as leaps in artificial intelligence (AI) applications have exposed limitations due to heavy memory access, with the von Neumann computing architecture. The parallel in‐memory computing provided by neuromorphic computing has the potential to significantly improve latency and power consumption. Key to analog neuromorphic computing hardware are memristors, providing non‐volatile multistate conductance levels, high switching speed, and energy efficiency. Ferroelectric tunnel junction (FTJ) memristors are prime candidates for this purpose, but the impact of the particular characteristics for their performance upon integration into large crossbar arrays, the core compute element for both inference and training in deep neural networks, requires close investigation. In this work, a W/Hf x Zr1−x O2/TiN FTJ with 60 programmable conductance states, a dynamic range (DR) up to 10, current density >3 A m−2 at V read = 0.3 V and highly nonlinear current–voltage (I–V) characteristics (>1100) is experimentally demonstrated. Using a circuit macro‐model, the system level performance of a true crossbar array is evaluated and a 92% classification accuracy of the modified nation institute of science and technology (MNIST) dataset is achieved. Finally, the low on conductance in combination with the highly nonlinear I–V characteristics enable the realization of large selector‐free crossbar arrays for neuromorphic hardware accelerators.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3