Efficient Methods for Natural Language Processing: A Survey

Author:

Treviso Marcos1,Lee Ji-Ung2,Ji Tianchu1,Aken Betty van3,Cao Qingqing4,Ciosici Manuel R.5,Hassid Michael6,Heafield Kenneth7,Hooker Sara8,Raffel Colin9,Martins Pedro H.1011,Martins André F. T.1011,Forde Jessica Zosa12,Milder Peter1,Simpson Edwin13,Slonim Noam14,Dodge Jesse15,Strubell Emma1516,Balasubramanian Niranjan1,Derczynski Leon417,Gurevych Iryna2,Schwartz Roy6

Affiliation:

1. Stony Brook University, USA

2. Technical University of Darmstadt, Germany

3. Berliner Hochschule für Technik, Germany

4. University of Washington, USA

5. University of Southern California, USA

6. The Hebrew University of Jerusalem, Israel

7. University of Edinburgh, UK

8. Cohere For AI, USA

9. University of North Carolina at Chapel Hill, USA

10. IST/U. of Lisbon and Instituto de Telecomunicações, Portugal

11. Unbabel, Portugal

12. Brown University, USA

13. University of Bristol, UK

14. IBM Research, Israel

15. Allen Institute for AI, USA

16. Carnegie Mellon University, USA

17. IT University of Copenhagen, Denmark

Abstract

AbstractRecent work in natural language processing (NLP) has yielded appealing results from scaling model parameters and training data; however, using only scale to improve performance means that resource consumption also grows. Such resources include data, time, storage, or energy, all of which are naturally limited and unevenly distributed. This motivates research into efficient methods that require fewer resources to achieve similar results. This survey synthesizes and relates current methods and findings in efficient NLP. We aim to provide both guidance for conducting NLP under limited resources, and point towards promising research directions for developing more efficient methods.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference288 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3