Realization of Self‐Rectifying and Self‐Powered Resistive Random‐Access Memory Memristor Using [001]‐Oriented NaNbO3 Film Deposited on Sr2Nb3O10 Nanosheet at Low Temperatures

Author:

Kim In-Su1,Kim Bumjoo1,Chae Seok-June1,Nahm Sahn1ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea University 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea

Abstract

[001]‐oriented NaNbO3 films are deposited on Sr2Nb3O10/TiN/SiO2/Si substrates at 300 °C. The Sr2Nb3O10 nanosheets are used as a template to form crystalline NaNbO3 films at low temperature. The NaNbO3 films deposited on one Sr2Nb3O10 monolayer exhibit a bipolar switching curve due to the construction and destruction of oxygen vacancy filaments. Because the Sr2Nb3O10 monolayer does not act as an insulating layer, the film does not exhibit self‐rectifying properties. Self‐rectifying properties are observed in the NaNbO3 memristor, which forms on two Sr2Nb3O10 monolayers that act as tunnel barriers in the memristor. The memristor exhibits extensive rectification and on/off ratios of 48 and 15.7, respectively. Tunneling is the current conduction mechanism of the device in the low‐resistance state, and Schottky emission and tunneling are responsible for the conduction mechanism in the high‐resistance state at low and high voltages, respectively. The piezoelectric nanogenerator produced using the [001]‐oriented NaNbO3 film generates high voltage (1.8 V) and power (3.2 μW). Furthermore, endurance of the resistive random‐access memory and nonlinear transmission characteristics of the biological synapse are accomplished in the NaNbO3 memristor powered by the NaNbO3 nanogenerator. Therefore, the [001]‐oriented crystalline NaNbO3 film formed at 300 °C may be utilized for self‐rectifying and self‐powered artificial synapses.

Funder

Ministry of Education, Science and Technology

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3