Inverse Design of Plasmonic Nanohole Arrays by Combing Spectra and Structural Color in Deep Learning

Author:

Liu Chun1,Zhang Jinglan1,Zhao Yiping2,Ai Bin1ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing Chongqing University Chongqing 400044 P.R. China

2. Department of Physics and Astronomy The University of Georgia Athens GA 30602 USA

Abstract

Herein, deep learning (DL) is used to predict the structural parameters of Ag nanohole arrays (NAs) for spectrum‐driving and color‐driving plasmonic applications. A dataset of transmission spectra and structural parameters of NAs is generated using finite‐difference time‐domain (FDTD) calculations and is converted to vivid structural colors using the corresponding transmission spectrum. A bidirectional neural network is used to train the transmission spectrum and structural color together. The accuracy of predicting the structural parameters using a desired spectrum is tested and found to be up to 0.99, with a determination coefficient of reproducing the desired spectrum and color to be 0.97 and 0.96, respectively. These values are higher compared to those when only training for spectrum, but requiring less training time. This strategy is able to inverse design the NAs in less than 1 s to maximize surface‐enhanced Raman scattering (SERS) enhancement by matching transmission resonance and laser excitation wavelength, and accurately regenerate colored images in 7.5 s, allowing for nanoscale printing at a resolution of approximately 100 000 dots in−1. This work has important implications for the efficient design of nanostructures for various plasmonic applications, such as plasmonic sensors, optical filters, metal‐enhanced fluorescence, SERS, and super‐resolution displays.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3