Multiphysics machine learning framework for on-demand multi-functional nano pattern design by light-controlled capillary force lithography

Author:

Chapagain Ashish,Cho In HoORCID

Abstract

AbstractNature finds ways to realize multi-functional surfaces by modulating nano-scale patterns on their surfaces, enjoying transparent, bactericidal, and/or anti-fogging features. Therein height distributions of nanopatterns play a key role. Recent advancements in nanotechnologies can reach that ability via chemical, mechanical, or optical fabrications. However, they require laborious complex procedures, prohibiting fast mass manufacturing. This paper presents a computational framework to help design multi-functional nano patterns by light. The framework behaves as a surrogate model for the inverse design of nano distributions. The framework’s hybrid (i.e., human and artificial) intelligence-based approach helps learn plausible rules of multi-physics processes behind the UV-controlled nano patterning and enriches training data sets. Then the framework’s inverse machine learning (ML) model can describe the required UV doses for the target heights of liquid in nano templates. Thereby, the framework can realize multiple functionalities including the desired nano-scale color, frictions, and bactericidal properties. Feasibility test results demonstrate the promising capability of the framework to realize the desired height distributions that can potentially enable multi-functional nano-scale surface properties. This computational framework will serve as a multi-physics surrogate model to help accelerate fast fabrications of nanopatterns with light and ML.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3