Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities

Author:

Hu Zhixian12,Lin Lan1,Lin Waner3,Xu Yingtian2,Xia Xuan4,Peng Zhengchun1ORCID,Sun Zhenglong2,Wang Ziya1ORCID

Affiliation:

1. Center for Stretchable Electronics and Nano Sensors College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

2. School of Science and Engineering The Chinese University of Hong Kong, Shenzhen Shenzhen 518172 China

3. Department of Micro-Nano Electronics School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China

4. Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen 518129 China

Abstract

The past decades have seen the rapid development of tactile sensors in material, fabrication, and mechanical structure design. The advancement of tactile sensors has heightened the expectation of sensor functions, and thus put forward a higher demand for data processing. However, conventional analysis techniques have not kept pace with the tactile sensor development and still suffer from some severe drawbacks, like cumbersome models, poor efficiency, and expensive costs. Machine learning, with its prominent ability for big data analysis and fast processing speed, can offer many possibilities for tactile data analysis. Herein, the machine learning techniques employed for processing tactile signals are reviewed. Supervised learning and unsupervised learning for analog signals are covered, and processing spike signals with machine learning are summarized. Furthermore, the applications in robotic tactile perception and human activity monitoring are presented. Finally, the current challenges and future prospects in sensors, data, algorithms, and benchmarks are discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3