Biomimic and bioinspired soft neuromorphic tactile sensory system

Author:

Kang Kyowon1ORCID,Kim Kiho1ORCID,Baek Junhyeong1ORCID,Lee Doohyun J.1ORCID,Yu Ki Jun12ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Yonsei University 1 , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

2. School of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University 2 , 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

Abstract

The progress in flexible and neuromorphic electronics technologies has facilitated the development of artificial perception systems. By closely emulating biological functions, these systems are at the forefront of revolutionizing intelligent robotics and refining the dynamics of human–machine interactions. Among these, tactile sensory neuromorphic technologies stand out for their ability to replicate the intricate architecture and processing mechanisms of the brain. This replication not only facilitates remarkable computational efficiency but also equips devices with efficient real-time data-processing capability, which is a cornerstone in artificial intelligence evolution and human–machine interface enhancement. Herein, we highlight recent advancements in neuromorphic systems designed to mimic the functionalities of the human tactile sensory system, a critical component of somatosensory functions. After discussing the tactile sensors which biomimic the mechanoreceptors, insights are provided to integrate artificial synapses and neural networks for advanced information recognition emphasizing the efficiency and sophistication of integrated system. It showcases the evolution of tactile recognition biomimicry, extending beyond replicating the physical properties of human skin to biomimicking tactile sensations and efferent/afferent nerve functions. These developments demonstrate significant potential for creating sensitive, adaptive, plastic, and memory-capable devices for human-centric applications. Moreover, this review addresses the impact of skin-related diseases on tactile perception and the research toward developing artificial skin to mimic sensory and motor functions, aiming to restore tactile reception for perceptual challenged individuals. It concludes with an overview of state-of-the-art biomimetic artificial tactile systems based on the manufacturing–structure–property–performance relationships, from devices mimicking mechanoreceptor functions to integrated systems, underscoring the promising future of artificial tactile sensing and neuromorphic device innovation.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

KIST Institutional Program

Yonsei Fellowship, funded by Lee Youn Jae.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3