Neuromorphic Artificial Vision Systems Based on Reconfigurable Ion‐Modulated Memtransistors

Author:

Yang Zhen1,Zhang Teng1,Liu Keqin1,Dang Bingjie1,Xu Liying1,Yang Yuchao1234ORCID,Huang Ru13

Affiliation:

1. Beijing Advanced Innovation Center for Integrated Circuits School of Integrated Circuits Peking University Beijing 100871 China

2. School of Electronic and Computer Engineering Peking University Shenzhen 518055 China

3. Center for Brain Inspired Chips, Institute for Artificial Intelligence Peking University Beijing 100871 China

4. Center for Brain Inspired Intelligence Chinese Institute for Brain Research (CIBR) Beijing 102206 China

Abstract

Conventional vision systems suffer from lots of data handling between memory and processing units. Inspired by how humans recognize noisy images and the flexible modulation on the timescale of ion dynamics inside an emerging memtransistor, a novel neuromorphic vision system is reported based on the ion‐modulated memtransistors. By controlling the ion‐doping processes under adequate stimuli strengths, both short‐term and long‐term ion dynamics can be utilized to deliver energy‐efficient data processing. When dealing with image reconstructions, the short‐term accumulation effect of the device can help filter noises in a set of received noisy images while enhancing the original pattern information. The increased contrast can help distinguish the actual contents. To demonstrate systematic performances with the reconfiguration of devices, the nonlinear relationship between channel conductance variation and the amplitude of gate pulses into the network‐level simulation is extracted. Also, with the nonvolatile conductance change characteristic, the task of recognizing noisy images is performed to verify the versatility of ion‐modulated memtransistors in the neuromorphic artificial vision systems. An interactive preprint version of the article can be found here: https://doi.org/10.22541/au.167939089.96499861/v1

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3