Affiliation:
1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education School of Mechanical Engineering Tianjin University Tianjin 300072 China
2. School of Electronic and Electrical Engineering University of Leeds Leeds LS2 9JT UK
Abstract
A shape estimation method that utilizes two sensing modalities of a customized fiber Bragg grating (FBG) sensor and a commercial air pressure sensor for a pneumatically driven soft finger with an extensive bending angle range based on an artificial neural network model is proposed. The proposed FBG sensor utilizes two tiny nitinol rods as a backbone to attach the long‐grating FBG element fiber, enabling high strain transfer, shape sensing for large bending deformation, and preventing chirping failure and fiber sliding when bending. Its distal end is set free to slide and synchronizes with the extended length and reflects shapes for large bending deformation (up to 320° with a linearity of 99.96%), while its proximal end is fixed. The small packaged sensor unit enables modular design, easy assembly, and high repeatability with negligible effects on the soft finger's bending performances. The artificial neural network model is utilized to process the input of two sensing modalities, reducing errors from material nonlinearity, fabrication, and assembly of soft fingers while improving shape estimation's accuracy and transferability with average errors of 0.90 mm (0.69%) and 1.55 mm (1.19%) for whole shape and distal end position, respectively. Preliminary experiments also verify the potential for pressing force prediction and hardness recognition.
Funder
National Natural Science Foundation of China
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献