A low‐power charge‐based integrate‐and‐fire circuit for binarized‐spiking neural network

Author:

Duong Quang‐Manh1,Trinh Quang‐Kien1ORCID,Nguyen Van‐Tinh1,Dao Dinh‐Ha1,Luong Duy‐Manh1,Hoang Van‐Phuc2ORCID,Lin Longyang3,Deepu John4ORCID

Affiliation:

1. Faculty of Radio‐Electronic Engineering Le Quy Don Technical University Hanoi Vietnam

2. Institute of System Integration Le Quy Don Technical University Hanoi Vietnam

3. School of Microelectronics Southern University of Science and Technology Shenzhen China

4. School of Electrical and Electronic Engineering University College Dublin Dublin Ireland

Abstract

SummaryThis paper presents a charge‐based integrate‐and‐fire (IF) circuit for in‐memory binary spiking neural networks (BSNNs). The proposed IF circuit can mimic both addition and subtraction operations that permit better incorporation with in‐memory XNOR‐based synapses to implement the BSNN processing core. To evaluate the proposed design, we have developed a framework that incorporates the circuit's imperfections effects into the system‐level simulation. The array circuits use 2T‐2J Spin‐Transfer‐Torque Magnetoresistive RAM (STT‐MRAM) based on a 65‐nm commercial CMOS and a fitted magnetic tunnel junction (MTJ). The system model has been described in Pytorch to best fit the extracted parameters from circuit levels, including the cover of device nonidealities and process variations. The simulation results show that the proposed design can achieve a performance of 5.10 fJ/synapse and reaches 82.01% classification accuracy for CIFAR‐10 under process variation.

Funder

National Foundation for Science and Technology Development

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3