Hydrodynamics and habitat interact to structure fish communities within terminal channels of a tidal freshwater delta

Author:

Huntsman Brock M.1ORCID,Young Matthew J.2ORCID,Feyrer Frederick V.2ORCID,Stumpner Paul R.2ORCID,Brown Larry R.1,Burau Jon R.2ORCID

Affiliation:

1. U.S. Geological Survey California Water Science Center Sacramento California USA

2. U.S. Geological Survey California Water Science Center West Sacramento California USA

Abstract

AbstractTerminal channels were historically a common feature of tidal delta ecosystems but have become increasingly rare as landscapes have been modified. Tidal hydrodynamics are a defining feature in tidal terminal channel ecosystems from which native aquatic communities have evolved. However, few studies have explored the relationship between fish community structure and hydrodynamics in these tidal terminal channel ecosystems. We sampled fish communities throughout a network of terminal channels within the northeasternmost region of the San Francisco Estuary to determine the relationship between fish community structure and hydrodynamics within these environments. We collected two years (2017 and 2018) of fish community samples using gill nets and analyzed data using multivariate community analyses and count models. We found metrics of fish diversity and counts of native fishes to be greatest upstream (farthest from tidal influence) of the tidal excursion within terminal channels. Counts of non‐native fishes were less affected by this hydrodynamic feature of terminal channels and more tightly correlated to local habitat conditions (e.g., water temperature, depth). Our results suggest that channel hydrodynamics plays a role in structuring fish communities within terminal channels, particularly native fishes. These results indicate that hydrodynamics in tidal delta ecosystems may be able to be altered in ways that benefit native fishes without the cost of water pumping.

Funder

Bureau of Reclamation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3