Free‐Water Imaging in Friedreich Ataxia Using Multi‐Compartment Models

Author:

Fernandez Lara1ORCID,Corben Louise A.234,Bilal Hiba4,Delatycki Martin B.235,Egan Gary F.46,Harding Ian H.16ORCID

Affiliation:

1. Department of Neuroscience, Central Clinical School Monash University Melbourne Victoria Australia

2. Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute Parkville Victoria Australia

3. Department of Paediatrics University of Melbourne Parkville Victoria Australia

4. Turner Institute for Brain and Mental Health & School of Psychological Sciences Monash University Melbourne Victoria Australia

5. Victorian Clinical Genetics Service Melbourne Victoria Australia

6. Monash Biomedical Imaging Monash University Melbourne Victoria Australia

Abstract

AbstractBackgroundThe neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free‐water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers.ObjectivesTo quantify the extent of free‐water and microstructural change in FRDA‐relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI).MethodMulti‐shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free‐water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free‐water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free‐water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy.ResultsIn individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ2 > 0.46).ConclusionsMulti‐compartment diffusion measures of free‐water and neurite integrity distinguish FRDA from controls with large effects. Free‐water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi‐compartment diffusion modeling, and investigations of free‐water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Funder

Friedreich's Ataxia Research Alliance

National Health and Medical Research Council

Publisher

Wiley

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3