ApoE4 expression disrupts tau uptake, trafficking, and clearance in astrocytes

Author:

Eisenbaum Maxwell1ORCID,Pearson Andrew1,Ortiz Camila1,Mullan Michael1,Crawford Fiona12,Ojo Joseph1,Bachmeier Corbin13

Affiliation:

1. The Roskamp Institute Sarasota Florida USA

2. James A. Haley Veterans' Hospital Tampa Florida USA

3. Bay Pines VA Healthcare System Bay Pines Florida USA

Abstract

AbstractTauopathies are a collection of neurodegenerative diseases characterized by the accumulation of pathogenic aggregates of the microtubule‐associated protein tau. Despite the prevalence and diversity of tau astrogliopathy in tauopathies, the interactions between astrocytes and tau in the brain, and the influence of neurodegenerative genetic risk factors like the apolipoprotein E4 (apoE4) isoform, are largely unknown. Here, we leveraged primary and immortalized astrocytes expressing humanized apoE isoforms to characterize the mechanisms by which astrocytes interact with and eliminate extracellular tau, and the influence of apoE genotype on these processes. Our work indicates that astrocytes rapidly internalize, process, and release tau via an exosomal secretory mechanism under physiological conditions. However, we found that apoE4 disrupted these processes in comparison to apoE3, resulting in an astrocytic phenotype prone to intracellular tau accumulation. Furthermore, exposure to repetitive mild traumatic brain injuries exacerbated the apoE4‐induced impairments in tau processing and elimination by astrocytes in apoE4 targeted‐replacement mice. The diminished ability of apoE4 astrocytes to eliminate extracellular tau can lead to an accumulation of pathogenic tau, which induces mitochondrial dysfunction, as demonstrated by our studies. In total, our findings suggest that the apoE4 isoform lowers the threshold of astrocytic resilience to pathogenic tau, rendering them susceptible to bioenergetic deficits in the early stages of neurodegenerative diseases such as traumatic brain injury, potentially contributing to neurological decline.

Funder

U.S. Department of Defense

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3