Effect of atorvastatin on lipoxygenase pathway‐related gene expression in an in vitro model of lipid accumulation in hepatocytes

Author:

Golfetto Miskiewicz Ivanna Carolina12,Cho Hyen Chung2,Lee Ji In2,Lee Jihye2,Lee Yenna2,Lee Yun Kyung2ORCID,Choi Sung Hee123ORCID

Affiliation:

1. Translational Medicine Department Seoul National University South Korea

2. Laboratory of Endocrinology and Metabolism, Department of Internal Medicine Seoul National University Bundang Hospital South Korea

3. Department of Internal Medicine Seoul National University College of Medicine South Korea

Abstract

Lipid accumulation in hepatocytes can result from an imbalance between lipid acquisition and lipid catabolism. In recent years, it has been discovered that eicosanoids derived from arachidonic acid (AA) have the potential to create specialized pro‐resolving lipid mediators to actively resolve inflammation, but it is not clear whether AA and lipoxygenases exert effects on hepatic inflammation. Here, the effects of atorvastatin on the expression of cytoplasmic phospholipase A2 (cPLA2) and lipoxygenase pathway genes (ALOX5, ALOX12, ALOX15, and ALOX15B) were evaluated in an in vitro model of palmitic acid (PA)‐induced hepatocyte lipid accumulation in McA‐RH7777 (McA) cells. Palmitic acid increased cPLA2 expression, intracellular AA levels, and ALOX12 expression (P < 0.05). Atorvastatin at various concentrations had no significant effects on AA levels or on cPLA2, ALOX15, and ALOX15B expressions. ALOX5 was not detected, despite multiple measurements. Pro‐inflammatory IL‐1β expression levels were upregulated by PA (P < 0.01) and attenuated by atorvastatin (P < 0.001). TNFα did not differ among groups. The expression levels of anti‐inflammatory IL‐10 decreased in response to PA (P < 0.05), but were not affected by atorvastatin. In conclusion, in an in vitro model of lipid accumulation in McA cells, atorvastatin reduced IL‐1β; however, its effect was not mediated by AA and the lipoxygenase pathway at the established doses and treatment duration. Further research is required to investigate time‐response data, as well as other drugs and integrated cell systems that could influence the lipoxygenase pathway and modulate inflammation in liver diseases.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3