A review on applications of fine particles integrated with fluidization technologies

Author:

Song Yue1,Yuan Yue12,Zhu Jesse134

Affiliation:

1. Department of Chemical and Biochemical Engineering The University of Western Ontario London Ontario Canada

2. Ningbo Institute of Digital Twin Eastern Institute of Technology Ningbo China

3. China Beacons Institute The University of Nottingham Ningbo China

4. Eastern Institute of Technology Ningbo China

Abstract

AbstractFine particles possess remarkable characteristics including extensive surface‐to‐weight ratios and diverse morphologies. Consequently, through the use of fluidization techniques, they have become favoured in various industrial processes, especially with continuous production. This review paper offers a comprehensive exploration of the integration of fine particle applications with fluidization technologies, with a specific focus on the Geldart Group C particles sized <25–40 μm. Although there are challenges with processing fine particles such as the strong cohesion in fluidized beds, recent progress, including the nanoparticle modulation method, has demonstrated potential solutions. These advancements render these cohesive particles applicable to industrial applications in different fields, including gas‐phase catalytic reactions, gas–solid fluidized bed coal beneficiation, ultrafine powder coating (UPC), pharmaceuticals, environmental sustainability, energy storage, and food processing. However, further research is needed to obtain a better understanding of fine particle fluidization in industrial settings in order to achieve larger‐scale implementation. In summary, this review provides a comprehensive overview of fine particle utilization integrated with fluidization technologies, demonstrating the potential in large‐scale industrial processes, and enabling significant advancements in practical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3