Environmentally Benign Partially Delignified and Microwave Processed Bamboo‐Based Drinking Straws

Author:

Rai Rohit1,Ranjan Rahul1,Kant Chandra2,Ghosh Udita Uday2ORCID,Dhar Prodyut1ORCID

Affiliation:

1. School of Biochemical Engineering Indian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India

2. Department of Chemical Engineering and Technology Indian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India

Abstract

AbstractSingle‐use plastic straws are a significant environmental concern as they pollute the ecosystem and drastically harm humans and aquatic organisms. Paper straws, as an alternative have limitations such as weak mechanical properties, poor water stability, and the use of coatings or adhesives that hinder their biodegradability. The present study reports a facile approach for preparing mechanically robust, water‐stable, and biodegradable straws using partially delignified and microwave (MW) treated bamboo. The MW‐processed bamboo‐based straws present water stability for up to 16 h and a contact angle of 87.8°, suggesting low wettability and water stability for long periods. The processed straws show improved tensile strength of 59.3 MPa, Young's modulus of 988 MPa, and a flexural strength of 13.9 MPa, along with >97% biodegradation (98 days). MW treatment is a rapid and low‐cost strategy for physiochemical modification that can be used for the large‐scale production of drinking straws from biomass. The life cycle analysis (LCA) shows that MW‐irradiated bamboo straws generate 86.53% less global warming potential (GWP) impact during production and 91.8% less human health damage impact during end‐of‐life (EOL), compared to plastic straws. MW‐treated drinking straws from bamboo can thus become a low‐cost, eco‐friendly, biodegradable, and sustainable alternative to paper and plastic straws.

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3