Affiliation:
1. Laboratory of Industrial Chemistry Ruhr University Bochum 44780 Bochum Germany
2. Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
Abstract
AbstractContinuous methanol photooxidation in the gas phase is a promising method to produce valuable chemicals like formaldehyde or methyl formate in addition to hydrogen under mild conditions. The influence of the reaction conditions on the selectivity of methanol oxidation to formaldehyde is studied using a heated flat‐plate flow photoreactor illuminated by an LED array (λmax = 368 nm) and Pt‐modified SrTiO3. A combination of online analytical methods allowed to quantify all gaseous products during extended time‐on‐stream (> 48 h TOS). The selectivity to formaldehyde is found to be primarily determined by the residence time and the process temperature. At a low methanol to water ratio, methanol conversion and evolution of CO2 are favored, whereas the light intensity primarily influenced the apparent quantum yield from 5.1 to 1.8% at 9.36 to 52.93 mW cm−2, respectively, and the methanol conversion thus determining the economic efficiency of the process. Operation temperatures higher than 110 °C resulted in a strong deactivation of the catalyst while simultaneously the formation of CO at the expense of formaldehyde selectivity is favored. This study demonstrates the importance of understanding the influence of relevant reaction conditions and the potential of selective photocatalytic gas‐phase oxidation of small molecules.
Funder
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Bundesministerium für Bildung und Forschung
Max-Planck-Gesellschaft
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献